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Abstract: In lattice or particle formulations of models for quasi-brittle materials, a medium is
discretized “a priori” according to an idealization of its internal structure. Geometrical parameters
of particles or lattice equip these type of formulations with inherent characteristic lengths and they
have the intrinsic ability of simulating the geometrical features of material internal structure. This
allows the accurate simulation of damage initiation and crack propagation at various length scales,
however, at increased computational costs. Here we employ the so-called Lattice Discrete Particle
Model (LDPM) recently proposed by (Cusatis et al., 2011). LDPM was calibrated, and validated
against a large variety of loading conditions in both quasi-static and dynamic loading conditions
and it was demonstrated to possess superior predictive capability, see (Cusatis et al., 2011b). Nev-
ertheless, the utilized calibration procedure was based on a hand-fitting, which complicates further
practical applications of the model. Here we present a Bayesian inference of model parameters from
experimental data obtained from notched three-point-bending tests and cube compression tests.
The Bayesian inference allows to solve the inverse problem as well-possed and to quantify posterior
uncertainty in parameters by combining a prior knowledge about the realistic parameter values and
uncertainty contained in measurement errors. In particular, we obtain the posterior distributions
by robust the Markov chain Monte Carlo sampling, where the computational burden, arising from
repeated model simulations, is overcome by using a polynomial chaos-based surrogate of the LDPM.

Keywords: lattice discrete particle model, concrete, notched three point bending test, cube com-
pression test, Bayesian inference, Markov chain Monte Carlo, polynomial chaos.

1. Introduction

In order to predict the behaviour of the structural system under the loading in a computational way,
the corresponding numerical model has to be properly calibrated. In other words, parameters of the
mathematical model of the system have to be estimated as accurately as possible to obtain realistic
predictions, e.g. for usage in an appropriate reliability analysis or structural design optimisation.
In this paper, the Lattice Discrete Particle Model (LDPM) is employed to accurately describe the
macroscopic behaviour of concrete in elastic, fracturing, softening, and hardening regimes (Cusatis
et al., 2011b; Cusatis et al., 2011a). To infer the model parameters from indirect experimental
measurements one can proceed in two principally different ways. The traditional approach is deter-

c© 2016 by authors. Printed in Germany.
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ministic, while advances in surrogate modelling and increasing computational capacity of modern
computers permitted many researches to focus on parameter identification in probabilistic setting.

The most common method of parameter estimation is based on fitting the response of the numer-
ical model to the experimental data. This deterministic approach leads to optimising parameters so
as to minimise the difference between the data and the model response. The optimisation problem
is, however, often ill-posed and thus requires the employment of robust optimisation algorithms.
The result of such optimisation process is only the single-point estimate of parameter values, as
you can see in Figure 1b, thus any information beyond the mean values of parameters is omitted.
Consequently, this deterministic inversion method does not provide any quantification of the un-
certainty in parameter estimates which in fact exists and is caused by e.g. an insufficient number
of observations and measurement errors. This contribution focuses on identification of epistemic
(reducible, subjective, cognitive) uncertainty arising from our lack of knowledge (Oberkampf et al.,
2002) which is supposed to be reduced by any new measurement according to the coherence of
learning (Mantovan and Todini, 2006; Beven et al., 2007).

(a) Material =⇒ Experiment =⇒

Data

titj

(b)
Mean values of

material parameters
=⇒ Model =⇒

Mean response

(c)
Epistemic uncertainty

in deterministic
material parameters

=⇒ Model =⇒

Uncertainty in mean response

Figure 1. Scheme of an experiment and different approaches to parameter identification.

In the last decades probabilistic methods for stochastic modelling of uncertainties have become
applicable thanks to a growing computational capacity of modern computers. The probabilistic
approach restates the inverse problem as well-posed in an expanded stochastic space by modelling
the parameters as well as the observations as random variables with their probability distributions
(Kaipio and Somersalo, 2005). Several methods for the uncertainty quantification in probabilistic
settings have been proposed in the literature. The last decade witnessed an intense development in
the field of Bayesian updating of epistemic uncertainty (Figure 1c) in description of deterministic
material or structural parameters, see e.g. (Marzouk et al., 2007). Here, a likelihood function is
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established to quantify our confidence in observed data, with the goal to update our prior knowledge
on model parameters (Gelman et al., 2004). The increasing popularity of Bayesian methods is
motivated by developments in the field of spectral stochastic finite element method, which allows
to alleviate the computational burden by surrogate models such as polynomial chaos expansions
(Marzouk and Najm, 2009). The most commonly referred techniques of Bayesian inference in
literature are based on the Markov chain Monte Carlo method (Marzouk et al., 2007), the Kalman
filter (Rosić et al., 2013) or optimal transport maps (El Moselhy and Marzouk, 2012).

2. Bayesian Inference

Consider a stochastic problem
z(x, ω) = y(x) + ε(ω), (1)

with uncertain model parameters x and random observable data z, which can be predicted by a
model response y(x) besides a measurement error ε. In Bayesian statistics, probability represents a
degree of belief about the parameter values (Tarantola, 2005). Combining the initial knowledge in
the form of the prior distribution p(x) and the experimental data as the likelihood function p(z|x)
according to Bayes rule

p(x|z) =
p(z|x)p(x)

p(z)
=

p(z|x)p(x)∫
x p(z|x)p(x)dx

, (2)

we obtain the posterior distribution of the parameters. The mean values of the updated distri-
bution are equal to the best guess of the parameters values with the uncertainty represented
by the corresponding variance. However the posterior statistical moments cannot be generally
computed analytically, because the identified distribution including the whole numerical model is
too complicated.

To overcome this obstacle, we use Markov chain Monte Carlo sampling (MCMC) of the poste-
rior distribution, which is a method based on a creation of an ergodic Markov chain of required
stationary distribution equal to the posterior (Gilks et al., 2005; Geyer, 2011). There are different
algorithms for constructing this chain (Spall, 2003), e.g. Gibbs sampler or Metropolis-Hastings
algorithm, which avoids calculating of the normalisation constant in Eq. (2) by evaluating only ratios
of target probabilities. Suitable setting of the proposal distribution for a random walk is important
and can be evaluated on the basis of acceptance rate (Rosenthal, 2011) or autocorrelation, which is
required to be minimal. The convergence speed of the procedure depends also on the appropriate
choice of the starting point (Geyer, 2011). The essential advantage of this method is its versatility
for usage with nonlinear models, when for an infinite number of samples it gives the exact solution.
The disadvantage of this method is its high computational effort resulting from necessity of a high
number of model simulations. In order to accelerate this sampling procedure in the identification
process, the evaluations of a numerical model can be replaced by evaluations of a computationally
efficient model surrogate.
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2.1. Polynomial chaos expansion

In this contribution, we employ polynomial chaos expansion (PCE) for the approximation of the
model response in the stochastic space (Marzouk et al., 2007), which has the following form:

ỹ(x(ξ)) =
∑
α

βαψα(ξ), (3)

where βα is a vector of PCE coefficients βα,i corresponding to a particular component of the system
response yi. ψα(ξ) are multivariate polynomials. The expansion (Eq. (3)) is usually truncated to
the limited number of terms nβ, which is very often related to the number of random variables nx
and to the maximal degree of polynomials np according to the relation

nβ =
(np + nx)!

np!nx!
. (4)

PCE can be used to approximate the response with respect to the probability distribution of the
random variables ξ. The convergence of the approximation error with the increasing number of
polynomial terms is optimal in case of orthogonal polynomials of a special type corresponding to
the probability distribution of the underlying variables (Xiu and Karniadakis, 2002). In particular,
we employ Legendre polynomials associated with the uniform distribution.

The efficiency of this technique depends on computational requirements of the PCE construction
and its consequent accuracy. In this contribution, the PCE coefficients are computed with help of
linear regression (Blatman and Sudret, 2010a), which is based on a set of model simulations.
The samples are drawn according to a stratified procedure called design of experiments (DoE), in
particular well-known Latin hypercube sampling (LHS), which is able to respect the prescribed
probability distributions (Janouchová and Kučerová, 2013).

2.2. Sensitivity analysis

Global sensitivity analysis (SA) is an important tool for investigating properties of complex systems.
It is a valuable part of solution of an inverse problem such as a parameter identification, where
the aim of SA can be estimating the influence of the identified parameters to the model response.
SA provides some information about the relationship between the system outputs/model response
and the system inputs/model parameters on their whole domain. Several approaches to SA have
been developed, see e.g. (Saltelli et al., 2000) for an extensive review. The presented contribution
is focused on Sobol sensitivity indices expressing an influence of chosen parameters on the response
variance. Sobol indices can be analytically computed from the PCE coefficients (Blatman and
Sudret, 2010b) according to the following relation

SPCE
i1,...,is =

∑
α∈Ii1,...,is

β2
αE[ψ2

α(ξ)]∑nβ
α=1 β

2
αE[ψ2

α(ξ)]
, (5)

where E[ψ2
α(ξ)] is computed specifically for Legendre polynomials as

E[ψ2
α(ξ)] =

∫
ψ2
α(ξ)dPψ(ξ) =

∫
· · ·

∫
nξ

nξ∏
j=1

(ψ2
α,j(ξj))dPψ(ξ1) · · · dPψ(ξnξ) =

nξ∏
j=1

2

2αξj + 1
, (6)
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where αξj is a degree of ξj in a polynomial term ψα. Ii1,...,is defines the polynomial terms depending
only on (ξi1 , ..., ξis), i.e.

Ii1,...,is = {αk = 0⇐⇒ k /∈ (i1, . . . , is),∀k = 1, . . . , nξ}. (7)

3. Calibrated Material Model

In this section, the examined material model, used for the calibration, is briefly described. The
material model, often employed to simulate quasi-brittle materials, is chosen to demonstrate the
capability of aforementioned approach. This model is based on lattice or particle formulations in
which materials are discretized “a priori” according to an idealization of their internal structure.
Particle size and size of the contact area among particles, for particle models, as well as lattice
spacing and cross sectional area, for lattice models, equip these type of formulations with inherent
characteristic lengths and they have the intrinsic ability of simulating the geometrical features of
material internal structure. This allows the accurate simulation of damage initiation and crack
propagation at various length scales at the cost, however, of increased computational costs.

Earlier attempts to formulate particle and lattice models for fracture are reported in (Cusatis
et al., 2003; Cusatis et al., 2006; Cusatis, 2011; Bažant et al., 1990; Yip et al., 2006) while the
most recent developments were published in a Cement Concrete Composites special issue (Cusatis
and Nakamura, 2011). A comprehensive discrete formulation for concrete was recently proposed
by Cusatis and coworkers (Cusatis et al., 2011b; Cusatis et al., 2011a) who formulated the so-
called Lattice Discrete Particle Model (LDPM). LDPM was calibrated, and validated against a
large variety of loading conditions in both quasi-static and dynamic loading conditions and it was
demonstrated to possess superior predictive capability.

In the present study the basic material properties of the tested concrete mix are kept constant
for all simulations. Note that these parameters influence the generation of concrete meso-structure,
see Table I. However, the seed number, governing the sampling of cumulative distribution func-

Table I. Values of parameters governing the gen-
eration of concrete meso-structure.

material property unit value

minimum particle size d0 mm 4

maximum particle size da mm 16

cement content c kg/m3 240

water to cement ratio w/c - 0.83

aggregate to cement a/c - 8.83

Fuller coefficient nF - 0.5

concrete density ρ kg/m3 2400
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tion of concrete granulometric distributions by a random number generator, is kept random. The
distribution of particles influences the material response and is assumed to act as a noise in the
response.

The parameters of the mathematical model which are kept constant or calibrated by the proce-
dure described above are summarised in Table II.

Table II. Values of material model parameters used in the numerical
simulations.

material property unit value (range)

normal modulus E0 MPa 20000 − 70000

shear-normal coupling α - 0.2 − 0.3

tensile strength σt MPa 1.5 − 5

tensile characteristic length lt mm 50 − 300

softening exponent nt - 0.1 − 1

shear/strength ratio σs/σt - 1.5 − 8

initial friction µ0 - 0.001 − 0.5

compressive strength σc0 MPa σc0 = 40σt

transitional stress σN0 MPa σN0 = 240σt

initial hardening modulus ratio Hc0/E0 - 0.4

transitional strain ratio κc0 - 4

deviatoric strain threshold ratio κc1 - 1.0

deviatoric damage parameter κc2 - 5.0

asymptotic friction µ∞ - 0.0

densification ratio Ed/E0 - 1.0

volumetric-deviatoric coupling β - 0

4. Results

The identification of the seven material model parameters for concrete is based on two types of
experiments, specifically a uniaxial compression test and a notched three-point-bending test. The
first experiment was repeated three times while the second one four times. For convenience and
readability, data are presented in terms of nominal stress N and nominal strain εN . The most
traditional tests to characterise concrete is the compression test performed on cubes of 150 mm
side length. The nominal values are defined as

σN =
F

a2
and εN =

u

a
(8)
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where F is the applied load, u denotes the load point displacement and a is the side length. The
fracture properties of concrete are characterised by means of the notched three-point-bending test.
The nominal stress and strain are

σN =
3Fl

dh2
and εN =

CMOD

h
(9)

where l stands for the beam span, h, d are the beam height and width, respectively. CMOD is the
crack mouth opening displacement measured over the notch.

Moreover, to eliminate the error in measurement caused by the testing machine stiffness, the
inelastic part of the strain is used for the model calibration

εinel
N = εN − σN (1/K) (10)

where K is the corresponding elastic stiffness. To capture the elastic properties of the model, the
initial elastic part of the cube compression test is utilised.

The updated joint probability distribution of the parameters is formulated according to Bayes’
formula as a product of prescribed uniform prior distribution with bounds given in Table III
and likelihood function arising from the experimental errors, which are supposed to be normally
distributed with zero mean values and standard deviations derived from the experimental data.
Specifically, in the identification process we consider from the compression test the measured stress
σN discretized into 250 strain steps with the error ε ∼ N(0, 82) and elastic stiffness K with error
ε ∼ N(0, 28802), from the notched three-point-bending test the measured stress σN discretized into
250 strain steps with the error ε ∼ N(0, 22).

Table III. Prior bounds and identified statistical moments of parameters’ distri-
bution.

E0 [MPa] α [-] σt [MPa] lt [mm] nt [-] σs/σt [-] µ0 [-]

Prior

MIN 20000 0.200 1.500 50.0 0.100 1.500 0.001

MAX 70000 0.300 5.000 300.0 1.000 8.000 0.500

Identification

MEAN 31183 0.297 2.236 166.6 0.910 3.192 0.063

STD 1998 0.003 0.193 17.8 0.037 0.338 0.051

The corresponding posterior distribution of the model parameters is obtained by MCMC sam-
pling. Because the full numerical model simulation is computationally intensive (approx. 4 hours for
the compression test and 10 hours for the bending test), the surrogate model has to be used. In this
case of the stochastic model, the approximation can also serve for a purpose of eliminating the noise
of the material model response caused by the random distribution of particles. We employ PCE in
a form of Legendre polynomials of the third degree constructed by linear regression based on 200
simulations of the full model for prior parameter samples. Thanks to this approximation we obtain
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500, 000 posterior samples in only few hours. The identified mean values of the parameters together
with the corresponding epistemic uncertainties expressed by the posterior standard deviations are
given in Table III. The updated univariate and bivariate marginal probability distributions are
shown in Figure 2.

E0 [MPa] α [-] σt [MPa] lt [mm] nt [-] σs/σt [-] µ0 [-]

E0

α

σt

lt

nt

σs/σt

µ0

Figure 2. Identified 1D and 2D marginal pdfs of model parameters.
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In order to validate the accuracy of the identification process, we compare the experimental data
with the model response corresponding to the identified mean values of the model parameters which
is shown in Figures 3 and 4. There are plotted five full stochastic model simulations and also the
PCE-based response. As one can see, the PCE-based response fits the experimental data very well
in the both experimental tests while the full numerical model response differs slightly in the case
of the three-point-bending test and more significantly in the case of uniaxial compression test. It
means that the used model approximation is not accurate enough. One reason can be a low degree
of the polynomials or the training samples are not chosen properly. In Figures 3 and 4, there are
also plotted the full numerical model simulations used for the approximation training. From these
graphs the training curves seem to be appropriate because the experimental data do not lie outside
the covered region.

0 0.01 0.02
0

50

100

150

εinelN [-]

σ
N

[M
P
a
]

 

 
Training simulations
Experiments
Identified PCE response
Identified response

Figure 3. Comparison of experimental data and model response corresponding to the identified parameters for the
uniaxial compression test.
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Figure 4. Comparison of experimental data and model response corresponding to the identified parameters for the
notched three-point-bending test.

While the increasing part of the stress-strain diagrams is fitted satisfactorily, the approximation
error is mainly related to their decreasing part. The problem can be explained with help of Figure
5 which shows a scatter diagram with maximal nominal stress σN on the vertical axis and area
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below the considered stress-strain curve A =
∫
σdε on the horizontal axis. From this point of view,

the experimental data lie outside the training simulations and the model approximation is forced
to extrapolate.
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Figure 5. Comparison of integrals of training and experimental curves for uniaxial compression test (a) and
three-point-bending test (b).

The unsuccessful calibration of the full model is apparently caused by the inappropriate prior
parameters’ distribution. The results of sensitivity analysis shown in Figure 6 can help us to estimate
the model parameters, which are already identified well and which the decreasing part of the
stress-strain curves is sensitive to so they probably cause the problematic approximation error.
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Figure 6. Sensitivity analysis for uniaxial compression test (a) and three-point-bending test (b) based on Sobol indices
computed from PCE approximation.

We estimate that tensile strength σt and shear/strength ratio σs/σt can be identified well while
softening exponent nt, shear-normal coupling α and initial friction µ0 can be the problematic
parameters. The posterior mean values of the latter two are also very near to the upper bound of
the prior uniform distribution which supports our assumption. Unfortunately, to this day we do not
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have the necessary additional simulations to confirm this and provide an appropriate calibration of
the examined material model.

5. Conclusions

The employed identification procedure is an efficient tool for calibration of nonlinear models al-
lowing to take into account epistemic uncertainties caused by e.g. experimental errors or a small
number of experimental data. Usage of PCE-based model approximation enables to handle the
computational requirements of Markov chain Monte Carlo sampling of the posterior distribution.
In this contribution, the calibration of the lattice discrete particle model for concrete does not
succeed properly because of the inappropriate choice of prior range of the parameters values,
which leads to the inaccurate approximation of the model response. In other words, the obtained
parameters’ distribution is correct with respect to the PCE-based model approximation, which
however significantly differs from the full numerical model. This inaccuracy can be overcome by
prescribing a new prior ranges for the evaluated parameters to obtain the necessary information
for constructing the accurate model approximation.
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